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ARMY MATERIALS AND MECHANICS RESEARCH CENTER 

A STATISTICAL THEORY FOR PREDICTING RESPONSE OF MATERIALS 
THAT POSSESS A DISORDERED STRUCTURE 

ABSTRACT 

A statistical continuum is one with material properties that can be 
described only in probabilistic terms. Such continua are encountered in 
an ever increasing number of important engineering and scientific problems. 
Examples include the response of heterogeneous solids, the mechanics of 
the flow of blood, the dispersion of additives by a turbulent fluid, the 
scattering of waves by turbulence, by a temperature substructure, etc. 
In this report we present a foundation that can be used to describe all of 
these physically different phenomena.  Emphasis is placed on the unique 
difficulties that present themselves to both the theoretical and the 
experimentalist and the progress that has been made in surmounting - or 
circumventing - these difficulties. 

The foundation is then applied to develop a statistical theory of 
heterogeneous linearly clastic solids. The applicability of the theory 
for predicting the response characteristics of a class of ceramics, a 
type of composite, a polycrystalline solid, etc., is discussed.  The 
practical utility of the theory is demonstrated. 
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1.  INTRODUCTION 

For an important class of engineering materials the homogeneous 
linearly elastic continuum represents an idealization that is valid only 
on a certain scale of observation, which may be termed the macroscale. A 
closer examination on a iiner scale, which is still far above the atomic 
scale, reveals heterogeneity although the model of a linearly elastic con- 
tinuum is still valid.  This finer scale may be termed the microscale. 
Examples of such materials are numerous. The most important is possibly 
the polycrystal, which is an aggregate of a very large number of aniso- 
tropic crystals that are oriented in space in a random fashion. Each 
crystal is large enough to be idealized as a homogeneous linearly elastic 
continuum.  Its mechanical properties are described by an elastic moduli 
tensor with components, referred to a space fixed system, that do not 
vary with position in the crystal. The components of the elastic moduli 
tensor for the polycrystal as a unit, again referred to a space fixed 
system, do vary with position in the polycrystal as one moves across the 
individual crystals. A second example of the class of materials of 
interest is the fiber reinforced composite.  Here, again, the fibers or 
the regions of the matrix between fibers are large enough to be idealized 
by homogeneous linearly elastic continua. The parameters that define the 
mechanical properties do not vary with position in the fiber or in the 
matrix, but do vary with a position change from a fiber to the matrix. 

The second feature that is common to the two examples cited is that 
the scalar fields needed to define the spatially varying material properties 
can only be described in statistical terms. That is, the scalar fields 
are given by stochastic processes.  In this report we present the founda- 
tion of a theory that is capable of making predictions of such solids. 
While the development of a consistent statistical theory of randomly hetero- 
geneous linearly elastic solids is relatively recent several interesting 
results have been achieved. To illustrate some of the more significant 
of these we present the following list. 

1. The intuitively satisfying concept of the validity of using an 
effective modulus theory to predict the locally averaged response has been 
demonstrated for a restricted class of problems. The restrictions are 
that the locally averaged response fields vary slowly enough on a length 
scale defined by the substructure and that one does not make predictions 
in the immediate vicinities of forces or boundary surfaces. 

2. It has been clearly demonstrated that the effective material 
properties depend on detailed information of the geometry of the substructure; 
i.e.,shape information, clustering information, etc.; and not just on 
volume fraction information. Further, the statistical formulation pro- 
vides a proper hierarchy for collecting this detailed information via 
the statistical moments. 

3. It has been demonstrated that some corrections that should be applied 
to the effective modulus formulation to allow for a finite size substructure 
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can be obtained from field equations that can be formally identified with 
those that arise using strain gradient theories.  No physical significance 
can be attached to the identification, however, since to achieve it one 
must violate thermod>namical requirements of the theories. Further, the 
strain gradient theories do not predict valid solutions for the immediate 
vicinities of forces ?nd boundary surfaces. 

4. A general formulation that incorporates a finite sized substruc- 
ture and can validly make predictions for all regions of the specimen has 
been presented. 

5. The validity of a dynamical effective modulus theory has been 
demonstrated.  It has been shown that the dynamical effective elasticity 
tensor is the same as the statical effective elasticity modulus tensor. 
Also, it has been shown that the effective mass density can be properly 
identified with the averaged mass density. 

6. The dynamical effective modulus theory predicts the nondispprsive 
nondecaying propagation of a signal. The statistical formulation demon- 
strates that both effects must be expected over long enoigh propagation 
distances. The apparent loss of energy implied by this statement is a 
result of incoherent scattering and not of the irreversible transformation 
of energy into a nonmechanical form, 

7. A formulation has been presented in the form of a low frequency- 
long wavelength theory that incorporates both signal distortion and signal 
decay. 

8. The possibility of the existence of high frequency-long wavelength 
solutions that are predicted by the microstructural theories has been shown 
to be remote. 

9. A general formulation that would enable one to calculate terms 
such as <(T-<T>)2> where T denotes the stress and <> denotes an averaging 
has been presented. This gives a measure of the average difference between 
the stress field and its locally averaged value.  This is thought to be 
important in considering failure. No solutions of this formulation have 
yet been achieved. 

Since a number of readers to which this report is directed may not 
possess the requisite familiarity with stochastic processes, we begin with 
some introductory sections. One section is devoted to the language of 
stochastic processes. Some care is taken in discussing the nature and the 
amount of information required to describe a random function. Emphasis 
is placed on the fact that although tho information needed to differentiate 
between (or to equate) two random functions is different in kind from that 
needed to differentiate between (or to equate) two ordinary functions, it 
is not necessarily different in amount. This simple observation is crucial 
to an understanding of any problem involving a random input. Other sec- 
tions are devoted to a discussion of a simple harmonic oscillator. In 
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one example we seek to show that the nature of the problem involved in 
predicting the response changes as the specific input parameter about 
which we have probabilistic information changes. We reserve the term 
statistical continuum theory to denote a class of problems for which the 
oscillator with a spring constant that depends on time in a random fashion 
is illustrative.  The elasticity problem fits in this class. Tue nature 
of the statistical continuum problem is discussed in detail within the 
context of the illustrative spring-mass. Also, the results that are 
subsequently to be presented for the elasticity problem are derived within 
the context of the simpler illustration. In this way, it is hoped that 
the "physics" of the problem is not hidden in a mass of mathematical 
details. 

After the introductory discussions, we turn to the physical problem 
of interest and present the outline of a statistical theory of heterogeneous 
linearly elastic solids.  Due to an attempt to keep this section self- 
contained there is some repetition of ideas discussed in the introductory 
section. In a third section, we discuss the role of experimentation and 
numerical techniques in statistical continuum studies.  In a final section 
we outline some ideas for areas of future studies that should prove to 
be fruitful. 

2. PRELIMINARY DISCUSSION 

2.1 ILLUSTRATIVE PROBLEM 

Determining the response of a simple harmonic oscillator to a time 
dependent forcing can be used to illustrate several different types of 
problems involving a random input. The oscillator is a simple spring mass 
system and the mathematical problem that allows the determination of the 
response, i.e., Jfft), is given by the differential equation 

d^y + k2y = F(t) 

dt2 

together with the  initial conditions 

and 
/(to) = yo 

y(t0) ■ v0 

(2a) 

(2b) 

The input information required for a prediction of the response is contained 
in the variables k2> F(t),y0,v0 and to-  In the first class of problems the 
randomness, or uncertainty, enters by way of the forcing variable F(t) or the 
initial values y0 and v0. In this class, k2 and to are taken to be known with 
certainty. In the second and third classes of problems the randomness enters 
by way of the spring constant k2. The forcing and initial conditions are 
also known with certainty. The distinguishing feature separating the second 
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class from the third class is that in the second k is a single number 
about which we have probabilistic information, whereas in the third k (t) 
is a function about which we have probabilistic information.  Finally, the 
fourth class of problems is characterized by the fact that the randomness 
enters by way of the time at which the initial conditions are specified. 
In this class k2, F(t), y0 and v0 are all taken to be known with certainty, 

To motivate this system of classification, we first consider 
problems in which k2 is a constant. This eliminates Class III from our 
discussion.  Ignoring for the moment the nature of the information we 
have of any of our input variables, if k2 is a constant we can writ? 
down a general solution that explicitly gives the dependence of y(t) 
on k2, F(t), y0, vD and t0. The reason for this is that, with k2 equal 
to a constant, the mathematical problem requires the solution of a 
linear ordinary differential equation with constant coefficients. A 
general solution algorithm is known for sucF problems. We write the 

general expression 

y(t) = — sin k(t-to) ♦ yo cos k(t-to) 
k 

FCtJ sin Mt-t^dtj 
(3) 

The greatest portion of the literature dealing with the response of 
an engineering system to a random input considers systems for which 
we are first able to construct a general expression explicitly 
relating the response variable to the input variables without taking 
into consideration the nature of the information of the ^nput variables, 
It is only after a general expression like that giwn by Eq. (3) has 
been obtained that one introduces the fact that one of the inputs is 
known only in probabilistic terms.  It is only in the more recent 
literature that one encounters papers that treat systems for which 
we are unable to proceed by first constructing the general inverse. 

The general expression given by Eq. (3) emphasizes a fact that 
is also important in considering types of problems involving random 
inputs. This fact is that the dependence of the response, y(t), on 
F(t), v0 and y0 is linear w .ereas the dependence of ylt) on k and t0 
is nonlinear. That the response depends linearly on the forcing is, 
of course, to be expected ünce the original mathematical problem 
is obviously of the type that is classified as linear.  It is some- 
times overlooked, however, that the usual definition of linearity 
refers to only the relationship between the response variable and the 
forcing variables. The dependence of the response on "parameters" of 
the problem such as a coefficient in a differential equation or the 
instant that defines the initiation of the problem on the location of 
a boundary is usually nonlinear even for problems that are classified 
as linear. The consequences of the linearity or lack of linearity in 
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y(t)   =  y    A(t)   +  v     BCt) 
o o 

♦ f1    GCt.tj)   F(t0)   dtj 

(4) 

ap'nUed^t T- l^^T6^  resP0"f of the oscillator to unit steps, 
appueu at t - t0, in displacement and velocity, respectively and Gft  tn 

. Am^i^cJ^r ioad riied at t- * ^ JA«. 
ind^ho in?. ^^   S^*^' depend 0n the entire time history of k2(tl 
"it   [Tnl1*1  "ZJ?',  ^ ™  -dfP-^-t of FCt). y0 and'vo and tie 
and rrt IT    0^ I      ■   f0r Problems that fall into Class 1. A(t°, B(t) 
and GCt.ti) are deterministic terms. The fact that we can ^nly irite 
analytic expressions for them for simple variations of k2 wUh time L 
esr important than the fact that for'a given k2(t they ca^ be obta ned 

before we worry about the random nature of P(tl y and v   For ^ 

S?1^ f(S  ^ Can reSOrt t0 thC ^gitaI^o%ut 
0-Fo ^b ems that fall into Classes III and IV. on the other hand. A(t). B(t) and 

GCt.tO n.e all random quantities. Further, we cannot writ« exnlicit 
expressions for the manner in which they depend on k^tHnd 17   ThL 
while the formal equation given by Eq. (4) may  still be w^itteS" it il'nf 
no  value in treating problems in Classes III and iv! '   1S 0f 

In summary, therefore, the simple oscillator illustrates several 
distinct problems in which the input data is random. 

the rLonse'of VnÜSl ^l™  ^^   " The problem JS to determine t e response of a unear system to a random loading.  Tne dependence of 
the response variable on the random input is linear and LyT cSSlettly 
determined before any consideration is taken of the input  Random    y 

vibrations problems fall into this category.  (1-2) 

2. Random Forcing Problems (Nonlinear) - A natural generalization 

innu "i: n0";- ^ "T*1*»" of ^  "«PO«« variable on' he ra d"m 
input is nonlinear and cannot be explicitly given in any annlication 
ot interest  The theory of turbulence mighAe classified'Tnder hL 
problem. The literature devoted to turbulence studies is vast and 
a source of many o^ the ideas that have been tried in other areas  (3-5) 

3. Randomized Parameter Problems - Problems in which it is possible 

I 
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to explicitly relate the response variable to some sys':em parameter that 
is described by a number about which we possess only probabilistic infor- 
mation. Class I] problems fall into this category. Much of the wovk or 
reliability theory is of this type. (6) 

4. Statist 
problems are cha 
cients that are 
problems fall in 
on the random in 
theory of disord 
dispersion of pa 
problems of this 
problems in this 

ica.1  Continuum Theories (Linear) - Mathematically, the 
racterized by linear differential equations with coeffi- 
random functions of the independent variables. Class III 
to this category. The dependence of the response variable 
put is nonlinear and cannot be explicitly written. The 
ered composites, propagation through a random medium, 
ssive additives by a turbulent fluid, etc., all are 
type. The main portion of this paper is devoted to 
category. 

5. Ctatistical Continuum Theories (Nonlinear) - A natural extension 
of the above that has received little, if any, attention. 

ft.    Randomly Located Boundaries - A ratural extension of Class IV 
problems. Flow through porous media and scattering by rough surfaces are 
two problems that may be categorized under this title. A few attempts 
have been made on predicting the response of solids in the vicinity of 
a rough boundary. (7-8) 

We shall return to our illustrative problem after we first introduce 
some more precise terminology to replace the qualitative ideas of proba- 
bility that have been used to date. 

2.2 LANGUAGE OF STATISTICAL CONTINUUM THEORIES 

The language of statistical continuum theories is rooted in the 
theories of probability and statistics and any attempt at serious work in 
the former area should be preceded by a good grounding in the latter. On 
the other hand, if one is willing to accept some lack of precision in 
considering details then one can go surprisingly far in understanding the 
physics of the problems using only intuitive ideas of probability.  In 
this short section we attempt to rely on these intuitive ideas to moti- 
vate a language to use in discussing some physical problems. 

inherent to the theory of probability is an ensemble. A random 
spring constant is not a single number associated with a single spring 
but is a collection of a large number (i.e., infinite) of numbers 
associated with an ensemble, or collection of springs. A random spring 
constant is said to be known provided one can give the probability of 
choosing a spring, at random, from the collection and finding that the 
value of its constant lies between any and every pair of numbers that can 
be specified. Mathematically, this can be done by introducing a proba- 
bility density function, P^ (5). defined by the condition that the 
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probability of randomly choosing a spring that will have a constant with 
a value that falls somewhere between the values K=a and k=b is 

b 
/ P, U)  d4 

a  K 

An alternate description of the random spring constant is given by 
its statistical moments. The nth order statistical moment of k, which we 

denote by <k > is defined by 

<k l> = cnpk (« d 4 (5) 

The lowest order moment, or <k>, is termed the mean spring constant.  Its 
physical significance is obvious.  It is the weighted average of all spring 
constants defined by the ensemble. The second moment, or ^k2" can be used 
to give a measure of the spread of values of all the spring constants 

about the mean value. We can write 

, ' 2    ,2    ,2 
<k > = <k > - <k> (6) 

where k' = k - <k>. The quantity <k > is termed the variance of the 
collection of spring constants. The higher order moments contain more 
refined information of the spread of the ensemble of values about the 
mean value. 

One could introduce other alternate methods for describing the 
random spring constant, e.g., through I characteristic function that is 

defined by 

Pk(S) :J \ (« e  d 5 (7) 

but for our purposes these latter will be of little value. One can 
obviously think up situations in which one manner of describing a random 
variable is superior to all others. For predicting reliability, the pro- 
bability density function appears to be well suited.  In the work to be 
described in this report the statistical moments have some very important 
advantages. Chief among these is that rarely, if ever, shall we be able 
to determine complete statistical knowledge of our random quantities. 
For many problems in which this is the case the statistical moments 
appear to collect partial information in a proper hierarchy of importance, 
Intuitively, the value of the mean spring constant is the most important 
information, a measure of the spread of the distribution of values about 

the mean is next, etc. 

* Consistent with the purpose of the section some definitions and 
conclusions will lack the precision required by the rigorous 

forma 1i sm. 
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Turning from a proper description of a single constant with i value 
that is known only in probabilistic terms* we next consider a proper 
description of a pair of constants with values that are known only in 
probabilistic terms. As an example one might think of the Young's modulus, 
E, and the shear modulus, G, for a collection of homogeneous, isotropic, 
linearly elastic specimens. Taking the two quantities separately, each 
requires a description as discussed above.  For example, one might give 
the two probability density functions PEU) and PQCU- These two func- 
tions, however, do not constitute a complete statistical description of 
the pair of constants, since they fail to incorporate any type of 
constraint that the pair of values might be forced to satisfy. An 
exa.nple of a constraint for our ensemble of elasticity specimens arises 
if one is able, from other considerations, to place a value limitation 
on the Poisson's ratio, v, of :he specimens. This, and the known rela- 
tionship that G ■ E/2 (1+v), places a limit on a pair of values to assign 
E and G. A complete statistical description of two random variables is 
given by a two dimensional joint probability function, say PECA^>^-     I'1 

the context of the example, Pj:c;(^,n) is defined by the statement that 
the probability of randomly choosing a specimen that has both a Young's 
modulus with a value that falls somewhere between E=a and E=b and a 
shear modulus with a value that falls somewhere between G=c and G=d is 

d b 

c/ /  PEG U.n) d Cdn 

The following statements may be proven from the definitions of 

PE U). PG(n) and Prr,(C.n) 

PE (^ fo/PEG U.n) dn, PGCn) =J  PEG U,n) d^ 

(8) 

and, if, and only if, no constraints exist, i.e., E and G are independent, 
then 

PBG(M) ■ PE («) P
GW (9) 

We can conclude the discussion of a description of two random variables 
by notir,? that alternate, equivalent descriptions are possible. 

Consider now a proper description of a function, say k(t), that is 
known only in probabilistic terms. Taking every instant of time singly, 
k(t) defines a random variable for each instant.  Each random variable 
requires a description as discussed above.  The totality of these descrip- 
tions is insufficient to completely categorize the function, however, for 
the reason discussed when considering two random variables. Taking every 

* Should such a quantity be termed a random constant or  a random variable? 
Consistent with the usual terminology we use random variable. 
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possible pair of instants together, k(t) defines a pair of random varia- 
bles for each pair of instants. Each pair requires a joint probability 
density function as that introduced above.  In addition, we must take 
every triplet (quartet, etc.) of instants together and consider the 
triplet (quartet, etc.) of random variables for each triplet (quartet, etc.) 
of instants.  In this manner we obtain three (four, etc.) 'imensional 
probability density functions. A complete statistical description of 
k(t) is the totality of all the information in all of the multi-dimensional 
probability density functions.  It can be shown that the totality of this 
information can be given in a mathematical quantity termed a functional; 
in the present case, the probability density functional. One may think 
of a functional as a higher order function. A function is a rule for 
assigning one number, i.e., the value of the function, to another number, 
i.e., the value of the argument of the function. A functional is a rule 
for assigning one number, i.e., the value of the functional, to a con- 
tinuum of numbers defined by a function, whic'i is the argument of the 
functional.  If we can accept the fact that an algebra and calculus of 
functionals have been developed, then we can imagine that the probability 
density functional gives the probability of finding a function within a 
range of functions by an integration in complete analogy to the probability 
density function giving the probability of finding a constant within a 
range of values by an integratioi . A mathematically proper formulation 
of problems involving the transformation of random processes would be in 
terms of functionals.  Attempts at obtaining such formulation and then 
at looking for solutions using these formulations are very recent and 
have met with only limited success. The functional approach is well 
beyond the scope of the present report and will not be pursued further. 
The approach has only been introduced since it is important to '.ecp 
sight of the nature of a properly formulated general problem. 

We shall find an alternate description of a random function, via 
its statistical moments, to be useful. The one point statistical moments 
are given by 

<k,,(t1)> = 0/!
n pk(ti) m d^ 

the two point statistical moments are given by 

.n m 

(10) 

(11) <k (tj) k (t2)> =JJ  C n pk(t )k(t ,{C,n)dWn 

the three point statistical moments are given by 

<knft Umrt Uprt U-// ?£ WP n  U.n.OdCdrnU (12) <k (t^k (t2)k (t3)> JJ^/« n t    Pk(ti)k(2)k(t2) 

etc. A complete description of the stochastic process requires specifi- 
cation of all of the statistical moments. Clearly this is an enormous 

r»-ifimi-arrian i i iiiiMiMlMIMthlilniiftiiMriMHnriMtiriiMr  



amount of informavion that we shall be able to obtain only for some special 
situations, e.g., k{t) is a Gaussian process in which case the higher order 
moments are uniquely determined by the one and two point moments. An advan- 
tage of the statistical moments is the observation that for stochastic pro- 
cesses arising in a variety of physical problems they appear to collect the 
information for a partial description of the process in the proper hierarchy 
of importance. Until very recently, the only higher order moment that has 
received much attention is the two point moment, <k(ti)k(t2)>. The im- 
portance of the information contained in this two point moment is more 
apparent than that in the more complicated moments.  Further, it will ho 
seen that it is a more easily measured quantity than are the higher order 
moments. The most recent work indicates that the neglect of the higher order 
moments, and in particular of <k(t1)k(t2)k(t3)> and <k(ti)k(t2)k(t5)k(t4)> 
is to end. This point shall be emphasized further during the discussion of 
some physical problems. 

One should not, however, jump to the conclusion that collecting infor- 
mation via the statistical moments is the most efficient or convenient for 
all physical problems.  The most convenient collection depends on the 
physical problem to be studied. Researchers on the fatigue of specimens 
subjected to random loading appear to have found it convenient to categorize 
loadings according to probability distributions defined on the extremum 
values and on the zero crossings. For other physical problems one can 
undoubtedly devise still other description procedures. One should always 
keep in mind, however, that a complete statistical description requires 
all ot the information contained in the probability density functional, 
or, equivalently all of the information in all of the multi-dimensional 
probability density functions. Anything less than all of this information 
implies that there is a nonuniqueness in our description of the random 
process.  In general we shall see that a nonuniqueness in the description 
of a random input to a problem must lead to a nonuniqueness in the descrip- 
tion of the random output. Realization of this nonuniqueness is crucial 
in the context of some physical problems and shall be again discussed in 
a later section. 

At this point it is convenient to introduce the concept of a stationary 
random process, or function of time. A process is termed stationary if all' 
of the multi-dimensional probability density functions needed to define 
the process arc independent of absolute time*.  Thus P)<(t)(?) for example, 
is independent of time; Pk(t1)k(t2)^»n1 depends only on the time difference 

M"^. Pk(t1)k(t2)k(t3) 

depends only on the time differences t1-t2 and ti-t3, etc, 
statistical moments, stationarity implies that <k> will be a 
<k(ti)k(t2)>- a2(T), where T= t1-t2. that <k(tl)k(t2)k(t3)» NjCtl-t; 
etc. Strictly speaking stationarity can only be achieved by processes of 
unending duration.  For many real processes, however, it is possible to 

*It is common to differentiate between a wide sense stationary process 
as given in this paper and a less restricted definition that only figures 
the on^ and two point probabilities to be independent of absolute time. 
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view stationär!ty as an ideal that becomes a better approximation the 
longer the duration of the process relative to all other characteristic 
times of the process.  As an example of a characteristic time, and the one 
to which reference is most frequently made, we consider the probability 
density defined on k(t) measured at a pair of times, say ti and t.  For 
the majority of stochastic processes that arise in physical problems any 
constraints that must be satisfied by a pair of values kCt,) and k(to) 
will exist only for time differences, tj-t,, that are less than some 
maximum value.  For times separated by a greater interval. 

U.n) = V/^v^ 
Ihis maximum time interval is a characteristic of the process that must 
be much shorter than the duration of the process for the concept of 
nationality to have much meaning.  In the literature it is common to 
assume that all characteristic times of this type are of the same order 
of magnitude and to use the time interval required in order to insure 
that <k(t1)k(t2)>=<k(t1)><k(t2)> as a measure of this order of magnitude. 

For stationary processes we can now introduce the concept of 
ergodicity. which is of fundamental importance for some of the interpre- 
tations of the work to be described in this paper.  Basically, an ersodic 
hypothesis is a statement that if the statistics of the process are 
independent of absolute time then to obtain a given statistical measure 
we are justified in using different values of absolute time n the same 
record in place of the same value of absolute time in diffrrent records 
Thus, for example, in order to obtain the probability density function 
for k(t) measured at a -ingle instant of time we can. for an ergodic 
process, replace the sampling that is required at that same instant of 
time on many records by a sampling that is to be taken at many instants 
of time in the same record.  The importance of an ergodic process is 
that we can obtain a complete statistical description of the process 
from a single manifestation of the process. As an intuitive concept 
to be applied to some physical systems the validity of ergodicity is often 
apparent. A mathematically rigorous justification of it is rarely possible 
In the work to be presented, the concept of ergodicity does not enter 
any of the r3sults achieved.  It is. however, important in interpreting 
some of these results.  This aspect will be further discussed within the 
context of specific physical problems. 

In terms of the statistical averages, ergodicity implies the equality 
of a statistical average and a temporal average.  Thus, for example. 

<k> = T-KO ff     fT  k^dt ::: constant (13) 

H       T 
<k(t)k(t*T)> •   t™   TF    f   kCt)k(t*T) dt = O(T)    (14) 

-T 

and 
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etc. The time average of the product of a record with a shifted replica 
of itself has been a quantity used by electrical engineers for many years. 
In their terminology it has been called the correlation function. We 
might note that it is in interpreting a statistical average by a temporal 
average or by a spatial average that we shall be invoking an ergodic 
hypothesis. 

One final concept that must be introduced to obtain even a cursory 
understanding of some of the work involving statistical continuum theories 
is that of an inverse space or Fourier representation.  The power of 
Fourier analysis in deterministic situations necessitates that all 
attempts be made to extend it to stochastic functions. An extension is 
really not necessary for processes of finite duration.  For stationary 
processes, however, an extension is required and it is this extension 
that is the subject matter of the Wiener-Khinchin theorem. Without, 
going into any proofs, which are quite complicated, the Wiener-Khinchin 

theorem tells us that 

1. A Fourier representation of all stationary random processes exist 
although it is necessary to define it in terms of Stieljes integrals. 

2. The amplitude spectrum defined by the Fourier representation of 
the stationary random process is deterministic. All of the indeterminancy 
of the process is contained in the phase spectrum. 

3. Locally averaged (in frequency space) amplitude spectrum squared 
and the two point moment or correlation function are related to each other 

as Fourier transform pairs. 

To obtain some intuitive insight into the meaning of the Wiener-Khinchin 
theorem, consider the stationary random process to be an electrical signal. 
In this context one can give a procedure for directly measuring the 
locally averaged amplitude spectrum squared. The value of the locally 
averaged amplitude spectrum squared at a given frequency is equal to the 
power of the signal obtained by passing our original electrical signal 
through a narrow band filter centered at this frequency.  The locally 
averaged amplitude spectrum squared is, thus, termed the power spectrum 
in the literature.  The Wiener-Khinchin theorem informs us that the power 
spectrum and the correlation function are Fourier transform pairs.  It 
was the ability of the electrical engineers to produce relatively simple 
and inexpensive circuits to directly measure power spectra that resulted 
in the interest in these spectra and in their transform pairs, the 
correlation functions. More refined measures of stationary processes have 
been neglected largely because of the absence of measurement techniques. 
As a result of the increase in digital processing of data, for which we 
can theoretically obtain any measures we desire, interest is now being 
shown in the more refined measures. 

While all of the preceding discussion of stochastic processes 
illustrated the process as a function of time, it is not very difficult 
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to translate it to processes that are functions of position. The work 
to be discussed in this repo.'t will deal with functions of position. For 
one dimensional problems the translation only requires a change in 
terminology. Stationarity is now termed statistical homogeneity. The 
concept of an inverse space, or k space^ is not as fimiliar to the 
mechanics researcher who might be interestef' in the one dimensional 
function of position as is the frequency space to the electrical engineer. 
This is really somewhat unfortunate since it would be equally as powerful 
in the mechanics problem and can be used to the same purpose. The spec- 
trum of a mechanical signal really amounts to a resolution of the signal 
into components which make additive contributions to the energy in the 
signal. Further, one can attach an easily recognized physical meaning 
to the components since they correspond to contributions of different 
linear size. For three dimensional problem: some extension is necessary. 
In addition to statistical homogeneity we can introduce some invariance 
properties of the statistics under some rotations.  Statistical isotropy 
requires invariance of the statistics for all rotations. For ergodic 
processes, statistical averages will be equated to surface or volume 
averages. Some extension is required in the theory behind the Fourier 
deconposition of the process. This has been accomplished.  It is even 
possible to extend the one dimensional analog filter of the electrical 
engineer into two dimensions by using optical techniques. The versatility 
of digital processing of data, however, would indicate that it will 
probably receive increasing attention in future studies. 

With this background into the language of stochastic processes we 
are ready to reconsider our illustrative example. 

2.3 ILLUSTRATIVE PROBLEM II 

Now that we have a precise definition of the information required 
to describe a constant or a function in statistical terms we can return 
to the illustrative problem to gain some further insight into the nature 
of physical problems that deal with input data that can only be described 
in such terms. 

Before we make any attempt at solving the problem posed we should 
f^rst assure ourselves that the problem posed does po; sess a solution. 
We should, if possible, also like to assure ourselves that the problem 
possesses a single solution. Should this latter be impossible we should 
like to at least be able to quantify any nonuniqueness that may exist. 
There should be no need to make excuses for raising questions as to 
existence and uniqueness of solution and none will be given here. Neither 
shall we indulge in long formal proofs since it is beyond both the level 
at which we discussed the description of a stochastic process and the 
level of this report.  We should, however, like to make what can be shown 
to be a properly posed problem prmear to be reasonable and further show 
that many problems that are implicitly stated do not possess a unique 
solution. 

13 

mum 



mmmmmmmmz* mm mm 

In simplified terms the point that is to be emphasized may be presented 
as follows: Consider the detorminist U- spring-mass system. From our physical 
intuition, or past experience, or a formal mathematical proof, we know that 
the response history is uiiiqiiel) determined hy the initial conditions and the 
histories of the spring con .t mt nul the iorcing. Suppose, however, that we 
do not know the complrn KittOt) >>f the iprtag constant. Suppose that gaps 
exist during which UM we htvt IM knowh'dgc of k(t). What can now be said 
cf the response historyl Obviously, we , innot still determine it or the 
origin 1 problem would have been over specified. Can we assume that the 
respon e history is still determined except within the time gaps during which 
we hrve no information of k(t)? Our knowledge of the spring-mass system is 
sufficient for us to conclude that this too is incorrect. The random input 
problem is analogous to this.  We no longer have a complete deterministic 
history of k(t), for example, but have ■ probability density functional 
defined on k(t).  It is intuitively clear that this information is insufficient 

for us to determine a unique deterministic history for y(t).  Is it suffi- 
cient to uniquely determine a probability density functional defined on 
y(t)? We suspect that the answer is yes. We could imagine that WJ could 
take each of the spring histories in the ensemble defined by the proba- 
bility density functional and separatei/ determine the response for each 
ignoring the statistical nature of the original problem. This gives us 
the desired ensemble of response histories and if is not very difficult 
to see that the probability of choosing one may also be obtained.  It is 
possible to rigorously justify the suspicion that complete information of 
the probability density functional defined as k(t) is sufficient to 
uniquely determine complete information of the probability density 
functional defined on y(t).  What about partial information? For in- 
stance, suppose we only know <k(t)>. This is obviously not enough informa- 
tion to uniquely determine a complete statistical description of y(t) 
but is it enough to uniquely define <y(t)>? The answer to this question 
is no! This answer is a direct consequence of the nonlinearity in the 
dependence of y(t) on k(t). We shall later show that any attempt to 
uniquely relate an effective material property of a two phase composite 
to the volume fraction of the constiuent phases Is predicated on a 
erroneous assumption that is identical to assuming that <y(t)>is uniquely 
determined by <k(t)>. Numerous examples of this same erroneous assumption 
taken from a variety of areas of study could likewise be listed. 

We can use the general solution for the oscillator with a spring 
constant that is independent of time to illustrate the assertion as to the 
relationship between lack of uniqueness and lack of linearity.  Let us 
take v0 = y0 = 0. First we consider the problem in which F(t) is the 
random input. We can obtain an expression for <y(t)> by averaging Eq. (3). 
Since the averaging and integrating operations are both linear the orders 
of performance may be interchanged. The result is 

<y(t)> = ■£- t Z* <F 1 1 1 (15) 
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Thus <yCt)> is uniquely defined by <F(ti)>. Consider next the problem 
in which k is the random input. Again we average Eq. (3) to obtain 

r.. = ;  P(t1)4 sink (t-t.)> dt <y(t)>   t       Ik 1* 
(16) 

The nonlinearity in the operations of taking an inverse taking a sine. 
or taking a product prevents our interchanging their order of performance 
with that of taking an average.  Equation (16) clearly demonstrates that 
knowledge of <k> is insufficient to determine <y(t)>. J^fJ' JfSlS! 
the sine function as a power series enables us to see that if the statis- 
tical information of k is described by its statistical moments then 
Inowledge of all of them is required to predict <y(t)>. 

It is instructive to consider <y2(t)> from which we can calculate 
the average of the square of the differences between y(t and <y(t)>. 
Squaring Eq. (3) with vo = y0 = 0 and averaging the result leads to - 
in the random forcing problem - 

<y2(t)> ■  ] 

k2 
/*      /* <F(t1)  F(tJ>  sink  [t-t  )   sink   (t-tj)  dt1dt2 

^o      to l * 
(17) 

We see from Eq. (17) that the full two point moment of the forcing is 
required to determine the variance of the response. 

For k dependent on time we look to the general expression given by 

Eq. (4), with X Y = 0 o 

y(t) GU.tj) PCtj) dtj (18) 

Once again, we note that a general analytic expression that gives the 
dependence of the impulse response function, i.e.. Gtt.tJ on the time 
history for k(t) is not known. For a uniquely specified k(t), however, 
we can reasonably expect that GU.^) can be constructed by means of 
a numerical algorithm. Or, since we are dealing with a umque.y defined 
physical system we can model it in the laboratory and experimentally 
determine Gtt.t,). With G^.t^ known. Eq. (18) gives the response for 
any loading history.  For random loading histories, we can use Eq. (18J 
to obtain the following deterministic equations on the most important 
averages defined on the response. 

<y(t)> ■ J      G(t.t ) <F(t )> dt 

and 
(19) 

=y(t1)y(t2)> / r GCt., t ) G(t i 
,t )<F(t )F(t )>dt dt 

For k(t) a stochasti: process one can still imagine a numerical or 
experimental determination of  G(t.t1). Now. however, the program requires 
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that we deal with ensembles and not a single system.  In this way, we can 
determine all desired information of GCt.tj).  (We shall discuss the 
numerical problem in a later section.)  Equation (18) can again be used 
to determine averages defined on the response for any loading history. 
For uniquely specified histories we may write 

and 

<y(t)> =  ;t <G(t,t,)>F(t,J dt' 
to 

(20a) 

.t /t 

o ^ 

ti  i  it 

<y(ti) y(t2)> ■ / / <G(t1,t )G(t  t )> F(t )F(t jdt dt 
*-n    t_ 

(20b) 

where <G(t,t )> and <G(t1,t )G(t2,t )> can be determined by the Monte 
Carlo type approach discussed. 

We can speculate on another possible fruitful way to use equations of 
the type given by Eq. (20) that would enable our by-passing the Monte- 
Carlo procedure. Consider Eq. (20a). for example, and imagine that it is 
possible to define a well posed inverse for it. That is, if the direct 
problem given by Eq. (20a) is to determine <y(t)> from information of 
<G(t,t )> and F(t ), then the inverse problem is to determine <G(t t')> 
from information of <y(t)> and PCt'). Assuming the inverse problem 
exists, it is then possible to interpret the single deterministic equation, 
i.e^Eq. (20a), as a phenomenological model that is capable of predicting 
th« mean field response under any loading history. Phenomenological in 
the sense that the model contains phenomenological parameters that are 
to be determined by requiring agreement between predictions of the model 
and experiments in some well defined test cases. The procedure for using 
the model is a two step procedure. 

1. For the test situations, obtain the information of <y(t)> and 
F(t) that is requiied by the inverse problem. Solve the inverse problem 
for <G(t,t )>. r 

t 

2. With <G(t,t )> known, the direct problem then gives the mean 
response for any loading history. 

Parenthetically we note that the classical elasticity theory is a phenomeno- 
logical model with the constants of elasticity as phenomenological 
parameters. All of the higher order elasticity theories, i.e., micro- 
polar, micromorphic, strain gradient, etc. are likewise phenomenological 
models with greater numbers of phenomenological parameters. 

It is via phenomenological models, although not those given by Eqs 
ßOa. and 20b), that the author believes we shall develop an ability to 
make predictions of <v(t)>, <y(t]) y(t;)> ,"^ThFluihtr^o^tTfo~ 
ESSlg» 1» JMgTTiti 19 the stochastTc input.~Tn tEe next secti^T 

16 

MMIllllfllll>lHlllllii uitmitoMw* MilMillTtMftllBlllUll .._ .. .. ..a^..,..    ,:... 



mmmmm '« I" ■llBiUülWWIIIWPPJWJ i mmmmmm mmmmmm w'm 

we develop models for <y(t)> and <y(ti) y(t2)>that hold promise of being 
particularly fruitful.  In addition, the required extension for irodels 
on higher order moments shall be clear. Once the models have been 
developed we shall be able to anticipate the form of similarly developed 
models for the random linearly elastic solid. 

One final remark may be made before leaving this section.  For 
problems in which the random variations of k(t) about a constant mean 
value, i.e., <k>, are small relative to the mean value, it is possible 
to obtain analytic expressions for 6(1,1*) as a functional of k(t) by 
resorting to a perturbation analysis. For these same problems, our 
phenomenological models cease to be phenomenological in that we shall 
now have analytic expressions defining what would be the phenomenological 
parameters.  It should be expected that the approximation obtained by a 
straight forward perturbation analysis could differ from that given by 
our models since the convergence properties of the two approaches could 
differ.  This is indeed the case.  For such cases arguments can be 
presented that indicate that the convergence properties of the approxi- 
mation given by our model are better. We shall not consider the weakly 
random spring in detail since it is not representative of the important 
physical problems involving heterogeneous solids. 

2.4 PHENOMENOLOGICAL MODELS GOVERNING 

MEAN FIELDS AND CORRELATION FUNCTIONS 

We present here a formal mathematical development of equations that 
must be satisfied by <y(t)> and <y(t1) y(t2)>. These equations then 
serve as the basis for our phenomenological models. No apology need be 
made for any real or imagined lack of rigor in the development procedure 
since the validity of the end result, like that of any phenomenological 
model, is determined by the ability to reproduce experimentally veri- 
fiable results. The author believes that a rigorous mathematical 
justification will one day be forthcoming for some restrictive situations. 

We again write Eqs. (1) and (2) 

dTj^ + k2y = F(t) 

dt2 

y(to) ■ Yo 

y(to) = v0 

CD 

(2a) 

(2b) 

where k (t) is taken to be described by a random function of position. 
We first consider the development of an equation to be satisfied <y(t)> 
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and 

d SgL4  <k2>  </> ♦  <(k2),y,> = F(t) 
dt2 

<y(to)> - yo 

<y(t )> = v 
o O 

C21) 

(22a) 

(22b) 
A prime has been  introduced tn H^nm-o f-K« j-cr- 
arable and the meaHalue.  i.e e dlfference b^ween a random 

and 0)     ' ** -  <*2> 
'   _ (23) 

<(k   )       y    >    ,<(](')     >    <y    ;     =    0 

the unknown .»!)< J>      n™. ifntT! t0 ""quantity,  they contain 

once „o ohtaii a'fuLtionlf^e ^Ln^ ^ ^'S*™* •g*«™' 

th^^ic^U^S e-atiOTS- -■•E--'""- <-> -™ 

i-f .«k2./, IO,»,'/ .VJVJ. 2   • 
(kZ)      <y> 

and y (to) - o 

7     (t0)     ::     0 

(24) 

(25a) 

(25b) 

be satisfied ^^ iSlSlT^r J"1" "" "" Sh0" t,'at th^ -"» 

n = t 
Provided the series converges*, provided for n = 1 

A2    '(1) 

(26) 

(27) 

det'e^i^ed JS^^f^^0^ infinite ^  that must be 
mathematical^ rigorous! P    Procedure to enjoy the status of being 
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1 

and provided for 

y,(1)(to) = o 

n >i. 

l^'W    +   <k2>y'Cn) ^^'/Cn-D^^/^-i) 

dt 

y,(n)(t0) = o 

y
,(n)(t0) = o 

(28a) 

(28b) 

(29) 

(30a) 

(30b) 

Equations (27) thru (30) are to be satisfied in sequence - first for 
y'U), then y'(2), etc. The problem to be solved for each y'OO is 
recognized to be that of determining the response of a spring-mass 
system, with spring constant equal to <k>, to a known forcing. The 
initial conditions to be applied are zero. The solution of each is 
immediately given by Eq. (3) - for <k2> a constant - or by Eq. (4) - 
for a more general <k2>. With all y,(")(t) t-h.'S determined, we can form 
<(k2),y,> in terms of an infinite series by making use of Eq, (26). We 
substitute the result into Eq. (21) which leads to the desired phenomeno- 
logical model on <y(t)>. We write the result as: 

; 

and 

and 

dS> + K(t,t ) <y(t )> dt = F(t) 
2 dr 

<y(t0)> ■ y0 

<y(t )> = v 
^ v cr    o 

(31) 

(32a) 

(32b) 

The term <k > <y> has been incorporated into the kernel function by 
introducing the Dirac Function. The infinite series that was encountered in 
the development procedure i'. all contained in an infinite series definition 
for .he kernel function. Kith an explicit algorithm for evaluating the 
kernal function there is Jthing phenomenological about the model.  It is 
only when we choose to ignore the explicit algorithm (which is useless until 
we are able to truncate or sum the infinite series) and elect to determine 
Ktt.tj) by matching predictions of the equations with experime'.tal data 
that the model becomes phenomenological. We have implicitly assumed, 
of course, that the inverse problem of determining K(t,ti) from measure- 
ments to be made of <y(t)> and F(t> is well-posed. This question as to 
the measurability of K(t,ti) has not received a great deal of attention 
within the context of the general model and we shall not discuss the 
question here. We can note, however, that measurability has been 
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demonstrated in some applications (see below) and can be trivially demon- 
strated for some approximate phenomenological models that can be derived 
from 1-q. (31). 

The utility of Eq. (31) as a phenomenological model is severely 
limited by th? large degree of arbitrariness for the kernel function, 
'Ht.tj).  For most physical problems of which our example is to be 
illustrative, the degree of arbitrariness for Ktt.tj) is probably far 
too great for us to ever hope that we can completely determine it in the 
laboratory. To obtain phenomenological models tl.at should prove to be 
of computational usefulness it will be necessary to place restrictions 
on K(t,ti).  Some of the restrictions may result from general require- 
ments as to causality, invariance groups and the like, some may result 
by ti.e- requirement that Ktt,^) not contradict the infinite series 
prescription, and some might arise as a result of speculation based on 
physical intuition.* The ultimate proof of these last mentioned restric- 
tions will be the ability of the resulting restricted models to reproduce 
experimental results. Only recently has some effort been spent in 
studying the consequences of restricted forms for l<(t,t1) and this 
effort has largely been devoted to speculative restrictions.  We can 
consider some of the consequences of the most obvious attempts at 
speculation. 

To motivate some speculations we consider the weakly random spring. 
The infinite series prescription for K(t,t1) is collected in terms of 
powers of the strength of the variations in k2(t). Thus, for a weakly 
random spring, it is valid to truncate the series to obtain a completely 
prescribed kernel. To first order we write 

KCt.tj)- <k> 6(t-t1) ♦ _L M(t1-t0)sin{<k>(t-t1)}a(t-t1)       (33) 

where ö(t-t1) is the Dirac Function, H(t1-t0) is the Heaviside function 
im 

a(t-t1) = ^k2^))' (k2(t1)
,> (34) 

Implicit in Eqs. (33) and (34) is a limitation to stationary statistics 
which is the case of greatest practical interest. The weakly random 
spring is illustrative of some important practical problems such a« the 
scattering of a radiation field by a turbulent fluid. For problems 
involving the response of heterogeneous solids, however, its usefulness 
is limited to a less direct application. The direct use of Eq. (33) is 

*It is possib 
equations tha 
spring that e 
of its extens 
should not at 
lar, it would 
would be appl 
function. It 
some type of 
energy in the 
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le to note an identity of form between the model derived and the 
t govern the response of a spring with memory. That is, a 
xerts a restoring force that depends on the entire past history 
ion and not just on its current value. Once said, however, one 
tach too much significance to this formal identity.  In particu- 
not be correct to introduce thermodynamic considerations that 
icable to a real sprang with memory to limit forms of the kernel 
must be remembered th..t <y(t)> must be interpreted in terms of 
average and that y (t) can offer a contribution to an average 
spring since energy depends en a power of the deformation. 
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prevented by the observation that most important heterogeneous solids are 
not weakly random. The indirect usefulness of Eq. (33) is predicated on 
the speculation that some conclusions drawn for the weakly random form for 
KU.t,) may prove to have a wider range of validity. For example, we can 
note that to be illustrative of most problems of physical interest the 
stochastic process, k2(t), is statistically independent of a time shifted 
replica of itself if the time shift is greater than some maximum value, 
say T.  Thus, o(t-tO = 0 for t-ti >T ■ Equation (33) indicates that 
non-zero values of K.(t,ti) will likewise be confined to time instants 
that are within a range of x of one another. One might speculate that 
this observation is likewise true for the strongly random spring. Also, 
we can note from Eq. (33) the Kit.ti)  depends not only on the statistics 
of k2(t) but also on the domain of the original problem specification. 
Subject to the above described process, however, we can further note 
that any dependence of Ktt,^) on t0 is confined to pairs of time instants 
t,ti that fall within an interval of duration t of t0.  If the observa- 
tion time for the response is sufficiently long relative to T we might 
reasonably obtain an approximation by ignoring this time interval. This 
allows us to view Mt,^) as a property of the ensemble of springs alone, 
which is very desirable.  It also allows us to take K(t,ti) to be a 
function of the time difference alone.  Assuming the correctness of these 
speculations, a restricted form of K(t,t1) will result in a greatly 
simplified phenonenological model.  Indeed, we can note that with K(tttjJ 
a function of the time difference alone the integral in Eq. (33) is of 
the convolution type, which suggests transforming the entire problem 
into frequency space. The frequency space representation of tl e solution 

is readily given 

£     F(w) + v0 - 
< y (OJ) > =   X , 

it U - a/ 

iuv (35) 

where a tilda denotes the Fourier representation. Equation (35) can be 
compared with the frequency space representation of the response^f a 
time independent linear spring. The difference is that K(w) = ^ 
in the latter case. Equation (35) represents the general solution of 
the restricted phenomenological model.  Recalling the s^eculatio.3 
leading to the restricted model we cannot expect that <y(u))> will 
accurately predict the mean rcponse in the immediate vicinity of the 
boundary of the domain of the ! roblem, i.e., near T = t0. We might note 
that Eq. (35) proves the measurability of /((t-t^ for the restricted 

model. 

Although a general solution has been achieved for the restricted 
model, it is instructive to return to the formulation and introduce some 
different approximations.  In this way, we can investigate the validity 
of some other phenomenological models as they apply to predicting the 
average response of a random spring.  The approximations to be introduced 
are thought to be valid for treating problems in which 1 LS very short 
relative to <k2>-1/2 and to all characteristic times defined by F(t), 
>0 and v . We .et T denote the shortest of these times and limit 

21 

1 

mi HBüiitrffiiiiMiHiminiwifliri lamiinMiniiniiwiiiirirt«MiMüHimi■  .. . —-- - -■ 
—  ■- ■ --^ 



mmmmmmmmm 

consideration to problems for which r/-<<l.  It seems reasonable to 
assume that variations in <>r(t)> are measurable on i time scale of order 
T.  As a zero^h order approximation, therefore, we might neglect all 
variations in ;y(t)>measured over a time interval of order T.  This 
allows removal of <y(t)> from under the integral sign of Eq. (31") giving 

,2 
d <y, 

d.2 

*2 
k  y = F(t) 

(36) 

where 

/  K (O d^ 
(37) 

Thus, for problems in which we can identify two widely differing time 
scales, one defined by the detailed variations in the stochastic process 
and one defined by the averaged characteristics of the system and by the 
forcing, the averaged response is approximated by the response of an 
"effective" spring-mass. We might further note that it is this identi- 
cal condition, i.e., the presence of two length scales, that enables our 
taking recourse to ergodicity and interpreting <y(t)> as a temporal 
average. The time interval for the average is long relative to t and 
short relative to T. Use of the classical elasticity theory to make 
predictions of the "averaged" response of a polycrystalline material, 
which is an example of a random solid, is based on assumptions as to the 
validity of both the ergodic hypothesis - in this case we equate an 
ensemble average with a volume average - and the effective modulus 
concept. 

It is to be noted that the solutions predicted by the effective 
modulus for <y(t)> predict that variations in <y(t)> are measurable on 
the same time scale as variations in the forcing, i.e., on the T time 
scale.  Thus, the effective modulus formulation is self-consistent in 
that the results achieved from the approximation are in agreement with 
the approximation. While self-consistency is an intuitively satisfying 
requirement of an approximate formulation it is by no means rigorous. 
Self consistency could merely mean that the approximate formulation only 
reproduces (approximately) a limited subset of the solutions of the 
exact formulation and that the members of that subset satisfy the 
conditions on which the approximation is based. To see this we can 
resort to the general solution given by Eq. (35). Resorting to residue 
theory, the real time solutions, <y(t)> arise due to pole ^ype singu- 
larities for <y(u) • These are given by the forcing via, F(u), and by 
K(to) -a) *. Real time solutions that vary slowly relative to I/T corres- 
pond to singularities located in the region of frequency space that 
satisfies ü)<<1/T.  In frequency space, the effective modulus formula- 
tion amounts to replacing ^(u) by its value atw = o, i.e., by k*2. This 
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approximation results in a shift in the singularities that are located in 
the vicinity of w = : k*.  It also changes the values^of the residues for 
<y(w)> for these poles ami for the poles located by p((»). These changes 
may all be viewed as modifications of corresponding solutions of the exact 
equations.  In addition, this approximation serves to obliterate additional 
poles arising from KO) - u2 = 0. Thus, the exact forrulation admits of 
solutions that have no counterpart in the effective modulus formulation. 
Whether these solutions will be physically significant will depend on 
the individual problem that is of interest. 

One can attempt to obtain an improvement to the effective modulus 
formulation that allows a degree of memory by expanding <y(t)> as it 
appears in the integral in Eq. (31) in terms of a power series about 
<y(t)> and in truncating after the linear term. The first order approxi- 

mation is thus given by 

dt2 
k T, d<y> + 

d T 

:y> =  F(t) (38) 

where 

1 
Tl = k*2 

I00  CK U) dC (39) 

It is to be expected that ^i  is of the same order of magnitude as is T. 

Equation (38) may be recognized as the equation that governs the response 
of a slightly damped spring-mass. What is the dissipation mechanism in 
a system that started out as being conservative? The answer lies in a 
statement presented in a previous footnote. The dissipation t^pe term 
arises not due to an irreversible transformation of mechanical energy 
to nonmechanical energy but to an irreversible transformation of co- 
herent mechanical energy to incoherent mechanical energy. That is the 
energy is taken from a response history that has a non-zero average and 
transformed into a response history that has a zero average. 

Making reference to the general solution given by Eq. (35), we can 
conclude that the first order approximation amounts to replacing K(ID) by 
the first two terms of its power series expansion about the origin. 
Retaining the linear term in the expansion results in a shift in the 
singularities that the effective modulus approximation locates at 
a)=*k*.  It also changes the values of the residues for all poles.  It 
does not introduce additional poles, however. Presumably the values of 
all these quantities as predicted by the first order approximation will 
be closer to the exact values by an amount of order (T/T). The real 
time effect of changing the location of a pole grows with the observation 
time.  The first order correction results in a shift of the pole from 
a)=tk* to a value that lies below the real frequency axis, for T^O. 
In real time, this shift corresponds to the introduction of an exponential 
decay. This is consistent with the observation made between the identity 
of Eq. (38) and the equation for a damped spring-mass. The real time 
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effect of changing the value of a residue of a simple pole does not grow 
with observation time. 

In summary, then, the most significant conclusion in comparing the 
real time solutions of the zerolll and first order approximations is that 
the differences are net uniform in observation time. One must suspect, 
therefore, that both approximations will cease to be valid for long enough 
observation times. The expectation is for the first order solutions to 
be valid for a longer observation time. 

Higher order formulations can be obtained by keeping more terms in 
the power series. In real time this results in higher order differential 
equations.  In the frequency space solution it is mirrored by a higher 
order polynominal for K(w) - w . For approximations of order three or 
greater the effect of retaining still one more term is to modify solutions 
that have counterparts in the lower order formulations and to introduce 
additional solutions. All of these solutions that have no counterpart 
in the effective modulus solution are not consistent with the reasoning 
justifying the truncation. That is, they all vary on a scale of charac- 
teristic time equal to T.  Because of this, the solutions must be treated 
with suspicion. This does not mean, of course, that Eq. (31") can never 
admit of solutions that vary on a time scale of ordert fEq. f351 indicates 
that such solutions will exist), it means rather that we are required to 
retain the complete integro-differential equation formulation if we are 
to accurately predict them. We might also emphasize that any solutions 
for <y(t)> that vary on a time scale of order T can only be interpreted 
in terms of an ensemble average. 

In a later section we shall consider the conclusions reached here 
for the illustrative problem as they apply to the theory of heterogeneous 
solids. 

We next turn to the development of an equation to be satisfied by 
<y(t) y (4)>.  First we multiply Eq. (1) taken at the point T by the 
same equation taken at the point £,. The result is written 

\ *L +k2(t)   —+ k2(c) ♦ k U)ly(t)y (0 = F(t)F(0 (41) 

A slightly modified method of smoothing (14) is now used in conjunction 
with Eq. (41). The final equation is written as 

(^T+<k2>)\   ^2   ♦ <k2>)^(t)yC€)> 

•[(£-J>) '- dt 
/     rCC.Cj) y(t) y Up d^ 

24 

iMiiii imdirl liinHIIMIÜüWBlii  amiimiiiiiiiiitiirmiiK   



pjiim um L i.« immmmmmmmmmmmm 

' 

JI.UIIM«I—WHH1""'^ 

/ d2     ♦    <k2>\    f KCt.tj) <y(t1) y (0> dtj 

^  di (42)  Cont 

of.J pCt.t^s^p-KCt.t^KCcc,)! <y( ̂  
y   U^dt.   dC,   ■  F(t)   F(C) 

" 

In the above, K(t,ti) is the same kernel function as that obtained pre- 
viously. An analytic prescription for determining the new term, 
aC-.t.; 5,5.) is given by the derivation procedure. Again, this prescrip- 
tion is in the form of an infinite series which will be of little direct 
use in problems of heterogeneous solids. This leads us to again attempt 
to view Eq. (42) as a phenomenological model. 

For most physical problems for which . .ie spring-mass system is illus- 
trative, the analog of Eq. (42) is a complex set of equations with which 
we have little experience. In the very recent literature on scattering 
of a radiation field by a random medium, however, some solutions have been 
presented not only for the analog of Eq. (42) but for the analog of an 
equation that can be developed by a similar procedure on the four point 
moment, i.e.,<y(t ) y(t ) y(t ) y(t )>. Within the context of the random 
linearly elastic solid, the general equations on the two point moments 
defined on the rec-ponse variables have recently been presented.  No 
solutions of these equations were obtained. 

3. STATISTICAL THEORY OF HETEROGENEOUS LINEARLY ELASTIC SOLIDS 

3.1  INTRODUCTION 

We shall now interpret the conclusions reached in the preceding 
sections to develop a statistical theory of heterogeneous linearly elastic 
solids. The theory is intended to be used for making predictions of the 
resnonse of a variety of materials, including polycrystals, ceramics, a 
cla~s nf composite materials, etc.  Each of these materials might be 
said to possess a disordered substructure. 

As noted in the discussion on describing random variables and pro- 
cesses, the concept of an ensemble is inherent to any statistical theory. 
In the'material problem, the ensemble is provided by a collection of 
materials that emerge from the same fabrication process. A generic 
interpretation of fabrication process that includes such things as crystal 
growth, :intering, etc. is intended. Each of the elements of the ensemble 
is tho-'i'.it to be identical to all of the others in some gross, or macro- 
scopic or average sense. The point by point variations of the material 
properties will differ for each element of the ensemble due to differences 
in some uncontrollable parameters of the fabrication process. 

In the ensemble approach for describing either the material composition 
or the response of a specimen made from the material, one no longer seeks 
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to differentiate between the individual elements of the same fabrication 
process.  The objective, rather, is to differentiate between all of the 
elements of one fabrication process from all of the elements of a second 
fabrication process. The most easily visualized method for the lumping 
together of all the elements of a single fabrication process, which is' 
implied in the statement, is to discuss only averaged quantities, where 
averaging is taken over the elements.  It is when one decides to'choose 
the statistical moments as the averaged quantities to be used in defining 
the ensemble that the ensemble approach is identified with a probabilistic 
approach.  (See preceding discussion.) 

While the logic motivating the idea to consider all specimens that 
result from a single fabrication process as a single entity is sound, the 
question can be raised a:5 to what such an approach can predict of a single 
test specimen. Some might argue that it is the latter problem, i.e., an 
individual specimen response, that is the physically meaningful one.  Two 
answers can be given. First, the identity of the ensemble approach and 
the statistical approach allows the interpretation of the averaged res- 
ponse of the ensemble in terms of the expected response in a single test 
specimen.  Further, it is possible to quantify the confidence with which 
one should view an expected response by making use of higher order infor- 
mation.  Secondly, it is possible to interpret the ensemble average of 
the statistical approach in terms of spatial averages that hold for each 
and every element of the ensemble in just those cases in which the element 
invariant spatial averages exist.  It is the ergodic hypothesis (see 
preceding discussion) that allows the interpretation of an ensemble 
averaged quantity as a prediction to be applied to an individual test 
specimen. 

In principle, ergodicity implies regions of infinite extent.  In 
practice, the requirement is that the stochastic process can be viewed 
on two length scales. The inner scale, of dimension t,  is the one on 
which the point by point variations of the process are measurable. Any 
variations in ensemble averages occur over distances that appear un- 
boundedly large when viewed on this scale. Variations in the ensemble 
averages are measurable on a second scale, termed the outer scale. We 
let L serve to denote the shortest characteristic dimension of the outer 
scale.  The point by point variations in the stochastic process are too 
rapid to be perceived when observed on the outer scale. Ergodicity is 
interpreted as an equation of the ensemble average and a spatial average 
over a region that appears unboundedly large to an inner scale observer 
and infinitesimally small to an outer scale observer. We note that the 
spatial integral could be over one, two or three dimensions depending 
on the dimensionality of the region within which the two length scales 
can be identified.  In our problems it is usual to think in terms of 
volume averages. However, in treating bounded solids one can imagine 
response fields, which, in the vicinity of a bounding surface, are 
described by stochastic process that are statistically homogeneous 
in only two dimensions. The two dimen.ional space is given by the 
geometry of the bounding surface. 
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We shall assume that the material properties are described by sto- 
chastic processes that are ergodic in the above discussed sense. For the 
polycrystal, the inner scale is defined by the individual crystals; for 
a composite, it is defined by the constituent phase geometry. Any finite- 
ness that can be applied to the outer scale arises from the size of the 
material specimen. Ab a result of the assumption, a complete material 
description of the ensemble of specimens can be obtained from measure- 
ments taken on any one of the elements of the ensemble. 

| 

Except for the most trivial geometries and forcing conditions, the 
response measures for a solid with statistically homogeneous random varia- 
tions in material properties will be given by statistically inhomogeneous 
stochastic processes. If, however, the characteristic linear dimensions 
that one can assign to the overall geometry of a test specimen and to 
the forcing conditions are all large relative to the inner scale of the 
material property variations, then, one can suspect that the stochastic 
processes needed to describe the response measures can be viewed on two 
length scales.  The inner scale is the inner scale defined by the 
material property variations. The outer scale is given by the overall 
dimensions of the test specimen and of the characteristic lengths of 
the forcing.  Assuming the validity of this assumption, a prediction as 
to the averaged response of the ensemble can be interpreted in terms of 
the individual response of each element of the ensemble. For specimen 
geometries and forcing condition that result in response fields that 
cannot be viewed on two length scales, one can only think of the single 
specimen test in probabilistic terms. 

In discussing the statistical theory of heterogeneous linearly 
elastic solids, three distinct problems are considered: 

1. Mean Field Response of a Statistical Sample of Heterogeneous 
Linearly Elastic Solids (Statical Loading) 

2. Mean Field Response of a Statistical Sample of Heterogeneous 
Linearly Elastic Solids (Dynamical Loading) 

3. The Correlation of Field Quantities in a Statistical Sample 
of Heterogeneous Linearly Elastic Solids 

3.2 MEAN FIELD RESPONSE OF A STATISTICAL SAMPLE OF HETEROGENEOUS 

LINEARLY ELASTIC SOLIDS (STATICAL LOADING) 

i 

In the absence of inertia effects, the equations governing the 
response of a linearly elastic solid are given by 

3.T. . 
J   1J 

= F, 
(43a) 
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1J 
Cijkl 4kl 

hi - l/2 Vfj + 3jui^ 
(43b) 

(43c) 

Here, Ui, 4j and T^J  denote the displacement, strain and stress fields 
respectively; Fi denotes th« body force field and CijU is the elasticity 
modul tensor, which gives a material description of the solid. We take 
^ijkl to be described by statistically homogeneous functions of position 
All other inputs to the problem, i.e., the body force field, the location 
of all bounding surfaces, the conditions to be satisfied on all bounding 
surfaces, are to be described by ordinary functions. 

Application of the method of smoothing leads to the following equa- 
tions to be satisfied by the ensemble averaged response fields.  (The 
details for these calculations are given in Beran and McCoy (15).) 

9. <T j <Tij> = <?ij
> ^ CVY + VV) 

<Tij(x)> = /Cijki ^'^  Si Cxi) %i> 

(44a) 

(44b) 

+ * Dijkl (^U^kl^ d^ (44c) 

We use / and <\>  to denote a volume integral taken over the extent of the 
specimen and a surface integral taken over all bounding surfaces res- 
pectively. The derivation procedure gives Cijkl(x,xi) and DljklCx.Xil 
in the form of infinite series, which are of little\omputational\alue. 
in giving a phenomenological interpretation to the equations the pre- 
scriptions for the two kernel functions are not used quantitatively. 
They might be used to give some qualitative insight into the analytic 
forms, however.  For example, the following statements are justified by 
the first few terms of the infinite series prescriptions. First, 
1Jkl(^.xi ) exhibits no singularity as the two points located by x xi 

approach each other whereas Cijkl (^i) exhibits a Dirac type singulari- 
ty as x -> xj . As the distance between the two points located by the 
arguments of Cijkl or Dijkl increases, their values decrease to zero over 
a length of order I, the maximum correlation length defined by Cüki 
Secondly, the values of the kernel functions depend on the statistics of 
Cijkl, on the location of the bounding surfaces, and on the type of 
boundary conditions. Thus, th~y are not properly interpreted as material 
parameters.  For points far enough removed from all bounding services 
the dependence of Cijkl (^-jci) on the boundary condition vanishes.  In' 
the case of homogeneous statistics any dependence of Cijkl(x-xi) on 
absolute position vanishes along with it.  In this same region, i.e. 
points removed from a boundary, we note that Dijkl 5 0. It can be 
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speculated that far enough, here, is to be measured relative to the 
length t. 

For specimens with overall dimensions that are very large relative to 
i,  therefore, one may conclude that, for most of the solid, it is valid 
to take Dijkl 5 0 and to interpret Cijkl(^-^i) as a material parameter. 
It is only within thin layers of bounding surfaces that one must consider 
the surface integral of Eq. (A4b) and also must consider the dependence 
0f Cajki on the boundary conditions that are imposed on the nearby sur- 
face and through this dependence, a dependence on absolute position. 
One might assume that the presence of these layers will have little 
effect on the mean stress mean strain, and mean displacement fields 
at points that are far removed from them. Thus, an approximate model 
for making predictions of the averaged response fieids at interior points 
may be obtained by ignoring these boundary layers allowing Eq. (44b) to 
be approximated by 

<t. . (x)> /Sjkl^l3 4kl V  d*l C45) 

Only the model that uses Eq. (45) as the relationship between the averaged 
stress field and the average^ .-train field has received any attention. 
It is to be expected that the general formulation, which uses Eq. (44b) 
in place of Eq. (45), will receive attention in the future since the 
region within which the approximate formulation ceases to be valid is 
very important in predicting failure. Cracks usually are initiated in 
the vicinity of bounding surfaces and a propagating crack defines its 
own bounding surface.  Since nothing has been reported using the general 
formulation, however, we are forced to leave it and consider the approxi- 
mate formulation. 

It is almost too easy to identify the form of the approximate formu- 
lation with that of a nonlocal elasticity theory. Nonlocal in that it 
relates the stress at one point in the specimen to the strain at all 
points.  Such theories have often appeared in the early literature. We 
emphasize that the identification of the equations developed here with 
those presented elsewhere is a formal mathematical identification. No 
physical significance should be attached to it without prior justifica- 
tion. Some studies (see below) have already shown that a too hasty 
interpretation of this mathematical identity in physical terms leads to 
errors. 

The nonlocal formulation may be approximated by a local formulation 
if the mean response fields vary little over the largest characteristic 
length associated with the nonlocality, i.e., L. The local formulation 
is termed an effective modulus formulation.  For it, Eq. (45) is 
approximated by 

<T. .> = C.. * <£,> 
ij    ijl   kl (46) 
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where 

*    =      r    C 
ijkl  f ^ijk i (^) dt (47) 

is termed the effective elasticity moduli tensor.  As was noted in dealing 
with the illustrative example, the conditions for which the effective 
modulus formulation represents a valid approximation are identical with 
those that enable our interpreting the ensemble average as a volume average 
I hat tlU pr.per equations for predicting the averaged response fields in 
the limit of vanishing l/L  are those of the classical elasticity theory 
is consistent with our intuition. 

The infinite series prescription for CijuO|) that was developed in 
the derivation procedure could be used in conjunction with Eq. (47j to 
obtain an analytic prescription for the effective elasticity moduli tensor 
Again, because the prescription requires the summation of an infinite series 
it is of little computation value.  It does, however, provide a clear 
demonstration that the effective elasticity moduli tensor is dependent 
on statistical information of all orders. Thus, any attempt to relate 
the effective properties to only a limited portion of the statistical 
information, such as knowledge of the percentages of constituent phases 
is not logically sound. A statement that one is interested in only approxi- 
mately determining the effective parameters is meaningless until a consis- 
tent manner of estimating the error is provided. 

In this report we do not consider, in detail, the literature on making 
predictions of the effective elasticity moduli tensor based on only partial 
information of the statistics of Cijkl. A review of this problem from the 
statistical viewpoint has recently appeared, Beran (17). We do point out 
however, that it is possible to place rigorous bounds on the parameters 
that define the effective material properties. The more information that 
is put into the bounds, the closer they become.  This and the fact that a 
geometric significance can be attached to different portions of the infor- 
mation put into the bounds has led to a considerable increase in our under- 
standing of the problem  For example, we know that volume fraction informa- 
tion of the constituent phases can only be used to shrink the separation 
distance between bounds on the effective parameters to some minimum. 
Introducing shape information of the constituent phases into the bounds 
allows a further decrease in separation between them. Again, however a 
minimum separation distance exists if only volume fraction and shape 
information is to be incorporated.  Introducing information of the packing 
or clustering of constituent phases can lead to a further decrease in 
separation distance.  In Beran (16), some very recent work is discussed 
that relates volume fraction information to the one point statistical 
moment, shape information to the three point moments, and clustering 
information to the four point moments. 

An important question to be studied deals with the validity of the 
solutions of the effective modulus formulation. Obviously, an application 
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of the formulatiun that results in solutions that are not consistent with 
the reasoning that led to the formulation indicates that the idealization 
is invalid for that particular application.  In addition, the discussion 
of the illustrative problem showed that self-consistency is not sufficient 
to insure that all is well. Based on that discussion it is wise to suspect 
that solutions that vary on the t scale will be admitted by the general 
non-local formulation even if they are not admitted bv the effective modulus 
formulation. A concomitant question to that of the limits of validity 
of the effective modulus formulation is the question of what one does to 
extend these limits should such an extension be desirable. An obvious 
extension that one might try is the expansion and truncation procedure 
that was introduced in discussing the illustrative problem. This approach 
is particularly appealing since the resulting formulations contain only 
differential equations and not integro-differential equations, which are 
more difficult to solve. Finally, one might note that the formulations 
that are obtained by the expansion and truncation procedure can be formally 
identified with equations that arise in the higher order continuum theories, 
i.e., strain gradient, micropolar, micromorphic, etc., hat have received 
a good deal of attention. This raises the question as to whether or not 
the identification is purely formal.  If physical significance can be 
attached to the identification, then, it is reasonable to restrict the 
material parameters that appear in the formulation to conform with the 
thermodynamic considerations of the higher order continuum theories. 
Also, it would be reasonable to look to the uniqueness theorems that are 
provided by these higher order theories to determine the make-up of a 

properly posed problem. 

To answer some of these questions one can look at a specific, although 
fundamental, problem and investigate the transmission of a force in a medium 
of infinite extent by the general formulation, by the effective modulus 
formulation, and by the formulation achieved by an expansion and truncation 
procedure. To answer the question that pertains to the formality or 
physical significance of the identity of the formulations that are achieved 
by the expansion and truncation and those given by the higher order con- 
tinuum theories one can look to the weakly inhomogeneous solid, for which 
our model is no longer phenomenological. Thus, we can actually calculate 
the values of the material parameters in this case.  In Beran § McCoy (15) 
explicit expressions for the material parameters that arf contained in the 
first strain gradient theory were obtained.  The results show that the 
calculated values violate ? positive definite requirement on the strain 
energy density indicating that the identity of the two formulations is 
only formal.  In Beran and McCoy (17) the transmission of a force in a 
solid of infinite extent was considered with the major conclusions being 
those termed three in the introduction.  In McCoy (18) a uniqueness theorem 
was presented for the general formulation. 
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3.3 MEAN FIELD RESPONSE OF A STATISTICAL SAMPLE OF HETEROGENEOUS 

LINEARLY ELASTIC SOLIDS (Dynamical Loading) 

The balance of linear momentum for a continuum subjected to a time 
harmonic forcing is 

9. T.. +p(i)v.  =F. (48) 

Where u denotes the radial frequency and p denotes the mass density. 
We take p to be described b) a statistically homogeneous function of 
position. The constitutive relationship and the strain displacement 
relationship are given by Eqs. (43a) and (43b), respectively. 

In McCoy (19) the method of smoothing was applied to the above des- 
cribed equations. The results achieved are extremely complex. Fortunatel/, 
this complexity is a crnsequence of the generality of the general formu- 
lation; a generality that is not required in most applications. Of 
ii'i-r.ediate practical interest is the low frequency - long wavelength 
response of the random linearly elastic solid.  In the low frequency- 
long wavelength limit the general formulation reduces to a dynamical 
effective modulus theory. 

That is, 

<T. . > + <p> <u.> + P. 
i    i 

(49a) 

<T .  > 
I. ijkl   ^kl (49b) 

<C .> = 1/2 (3. <u.>+ 3. <u. >) (49c) 

where Cjj..- is identical to that achieved by ignoring inertia effects 
from the outset. Two important conclusions can bo drawn from this set 
of equations: 

1. In the dynamical effective modulus theory it is proper to identify 
the effective mass density with the average mass density.  This is impor- 
tant since it is the average mass density that one obtains by weighing the 
composite. 

2. In the dynamical effective modulus theory it is proper to use the 
statical effective elasticity moduli tensor. 

The effective modulus formulation predicts the conservative, distortion- 
less propagation of a signal. One could question the reasonableness of 
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this prediction. On physical grounds it would appear to be more reasonable 
to expect both decay and distortion over long enough propagation distances. 
This suspicion is further strengthened by the conclusion reached in treating 
the illustrative problem that the effective parameter formulation does 
cease to be valid if the observation time is long enough. Further, this 
illustrative problem showed that corrected formulations achieved by an 
expansion and truncation procedure were able to make valid predictions of 
the far field response.  In McCoy (19), the expansion and truncation pro- 
cedure was applied to the general formulation that results from dynamical 
elasticity equations. The approximate formulation thus achieved does 
predict both decay and distortion of a propagating signal. The propagation 
distances that are required for these effects to be observed are of the 
order of L4/Ä3 and L^/l2,  respectively. Here, L is a characteristic wave- 
length of the signal. We note that in a one-dimensional wave-guide the 
propagation distance required for decay effects to be observed is of the 
order of l2/Z   (20). 

The higher-or'er gradient theories liknwise predict dispersive signal 
propagation. They can also be made to predict decay if one introduces 
the possibility of energy loss. The energy loss in this case is due to 
incoherent scattering and not due to the irreversible transformation of 
energy to a non-mechaiiical form. 

One might also note that the conservative higher-order gradient theories 
predict solutions that may be termed high frequency - long wavelength solu- 
tions.  That such solutions are physically meaningful for solids that 
possess a periodic substructure is well known. One could ask whether such 
solutions are meaningful for solids that possess a disordered substructure. 
In McCoy (21), this question was studied for an acoustic medium, i.e., a 
medium that cannot sustain shear. Here it was shown that such solutions 
do not exist. 

3.4 THE CORRELATION OF 'TELD QUANTITIES IN A STATISTICAL 

SAMPLE OF HETEROGENEOUS LINEARLY ELASTIC SOLIDS 

To the author's knowledge the or.ly reported work dealing with the 
two point moments that can be defined on the response fields for the random 
linearly elastic solid is a recent paper (McCoy (22)), in which the general 
formulation analogous to that given for the illustrative problem was 
presented. None of this is reproduced here because of the complexity 
of the formulation and because of the preliminary nature of the results 
obtained. 
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4.  ROLE OF NUMERICAL APPROACHES AND EXPERIMENTATION 

IN STATISTICAL CONTINUUM THEORIES 

There are two inherent difficulties in introducing numerical techniques 
by means of a Monte Carlo type approach to the study of statistical con- 
tinuum theories. The first pertains to the very large number of computa- 
tions that are required by the nature of the problems to be studied. The 
second pertains to the difficulty in simulating a stochastic process with 
predetermined statistics on a digital computer. The seemingly endless 
capacity to improve our computer technology indicates that this first 
problem will be lessened in the future. Already it is feasible to accom- 
plish, in an acceptable period of time, the numbers of computations re- 
quired by some statistical continuum problems. The second difficulty, 
on the other hand, is more permanent. 

To illustrate the d 
pushed. Algorithms exi 
that can serve as the en 
ensemble can be construe 
density function. Such 
tor. Algorithms do not 
pairs of values that ca 
dependent random variabl 
required by jointly dist 
lating a stochastic proc 

ifficulty we first consider what has been accom- 
st that enable us to ronstruct a set of values 
semble for any random variable. That is, the 
ted so as to reproduce any desired probability 
an algorithm may be termed a random number genera- 
exist that would enable us to construct a set of 
n serve as the ensemble for twr. statistically 
es.  It is our inability to build in the constraint 
ributed random variables that prevents our simu- 
ess with predetermined statistics. 

What might be termed a completely incoherent stochastic process can 
be simulated by calling on the random number generator for each discreet 
value(s) defined on the independent variable(s) of the random process. 
Completely incoherent processes are commonly used in both computer studies 
and experimental studies requiring a stochastic input.  The utility of 
these studies are limited, however, to problems It  which the input process 
of interest, is completely incoherent or to problem.: in which the output 
of interest is independent of any of the statistics of input process 
measured at two or more points. We note that the completely incoherent 
process can be introduced as providing an approximation in the elasticity 
example only in the limiting situation in which all characteristic inner 
scale dimensions approach zero. 

Some degree of statistical dependence for values to be measured at 
two or more points can be added to the completely incoherent process by 
transforming it in some specified manner,  l-'or example, one might filter 
a completely incoherent random process to obtain a process that does 
exhibit some degree of coherence.  (The Weiner-Khinchin theorem even 
enables us to choose the appropriate linear filter to obtain a prescribed 
correlation function.] Unfortunately, with one notable exception, i.e., 
passing a Gaussian process through a linear filter, one is rarely able to 
predict the results of the specified transformation. Our failure to 
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accomplish this would indeed seem to make the much more difficult problem 
of predicting the transformation needed to achieve an output with speci- 
fied statistics intractable. 

With this in mind, it is to be expected that much use will be made of 
Gaussian processes in future numerical studies.  One difficulty of using 
the Gaussian process in the materials problem is that a Gaussian variable 
can take on any real value. Thermodynamic consideration places value 
limitations on the material parameters that the process is required to 
simulate, however. Thus a Gaussian process is not strictly suitable and 
some modification will be required in the tails of the distribution 
functions. 

As an alternate to using the Gaussian process, it is to be expected 
that attempts will be made to simulate fabrication processes in the com- 
puter. As an example, we consider the following process that is described 
in Beran (16) for generating a two-dimensional random function that may 
be representative of some two phase materials. We first choose N points 
per unit volume at random in a plane surface. These points are termed 
Poisson points.  Next we choose, at random, Vj = M/N of the Poisson points 
to belong to one material and l-Vj, points to belong to the second material. 
Finally, we decide which material may be associated with all other points 
by stating that the material at a point is the same as the material at 
the nearest Poisson point. Once the stochastic function has been genera- 
ted as described, we can measure the resulting statistics. 

Again, one might simply read in results of physical experiments that 
define correlated stochastic processes.  The statistics of these processes 
like those of our two phase Poisson material can now be measured.  The 
objective here is to build up a library of stochastic processes from which 
we can select one that has the desired characteristics for a given study. 

Computer studies of statistical continuum problems are all relatively 
recent.  Dcane (23) considers some randomly spaced defects in a periodic 
lattice.  (See also Adams and Tsai (24).)  For the more general problem, 
reference can be made to Bradley and Herrmann (25) for numerical studies 
of propagation through a turbulent medium.  Two research programs are 
currently being accomplished at Catholic University which involve numeri- 
cal solutions of statistical continuum problems. One considers the 
scattering of acoustic waves by a randomly rough surface and the second 
considers the propagation of signals through a one dimensional random 
waveguide. 

The ultimate test of the validity and the utility of the theoretical 
ideas discussed in this paper will be experimental tests. Thus, experimenta- 
tion will play a central role in all aspects of the problem.  It is there- 
fore unfortunate, that so little experimental work that recognizes the 
inherently statistical nature of the problem las been reported.  Indeed, 
of all of the ideas discussed, it is only the problem of predicting the 
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effective properties that has received any attention at all. And here, only 
the experiments of Corson (26) considered other than volume fraction infor- 
mation to describe the substructure geometry.  Clearly, a great deal more 
experimentation is indicated. 

FUTURE STUDIES 

Most of the work reported in this paper could rightly be classified as 
laying a theoretical foundation for a statistical interpretation of the 
analysis of solids with disordered substructures. While additional work 
along this same line is warranted, the number of results already achieved 
is great enough to warrant a slight shift in emphasis in our future efforts. 
In the immediate future some emphasis should be placed on validating, by 
both numerical and experimental procedures, the results obtained to date. 
In addition, some emphasis should be placed on demonstrating the physical 
importance of the results obtained to date.  Listed below are some areas 
of future studies that incorporate this shift in emphasis. 

Problems in which the mean field quantities are the quantities of 
interest may be classified by the validity or the lack of validity of 
making predictions based on the effective modulus formulation. For the 
former class of problems, the formulation of any problem is well under- 
stood as is the interpretation of the predictions to be made. For this 
class, an ergodic hypothesis is valid and all averages may be viewed as 
spatial averages. Thus, the only remaining question of interest is the 
relationship between the effective properties of the formulation and 
measures of inner scale point by point variations in material properties. 
The statistical interpretation has contributed two significant results 
to this latter problem.  First, it has shown that volume fraction informa- 
tion of the constituent phases docs not alone determine the effective 
properties. Shape information, packing information, etc. are also 
important. Secondly, the statistical interpretation provides a hierarchy 
of measures for incorporating this added information. A final step is 
the need to relate the measures in the hierarchy to parameters in a 
fabrication process. While shape information is readily related to a 
fabrication process parameter, packing information is not. One might 
imagine that the size distribution on constituent phases enters the 
picture but the relationship between the two is not completely clear. 
Once the final step is achieved, the tools will be at hand to synthesize 
materials with desired effective properties by changing the substructure 
geometry.  It seems clear that a task that should be accomplished in order 
to carry out this program is to develop the capability of measuring the 
hierarchy of statistical measures.  It might be parenthetically remarked 
that this capability holds promise of being useful in a wide range of 
problems. 

In considering situations in which the effective modulus formulation 
predicts results that are at variance with physical reality it is convenient 
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to differentiate between two different types of errors. One type of error 
to be expected is characterized by its local nature. Any sharp discon- 
tinuity in specimen loading or specimen geometry is to be expected to 
give rise to a stress field in the immediate vicinity of the discontinuity 
that will differ significantly from that predicted by an effective modulus 
formulation.  It is important, therefore, to use a generalized theory for 
making predictions for a class of fracture mechanics problems.  It has 
been demonstrated that the strain gradient theories are not to be expected 
to represent a valid generalized theory.  What is needed is a theory that 
incorporates the non-local nature of the integral operator that relates 
the averaged stress and strain fields. To make this type theory practical 
will require our limiting the forms of the kernel function. As discussed 
in the report, limitations on the forms can be achieved on several fronts. 
Dltimately, however, the author expects that limitations that result from 
our intuition in conjunction with a suitable test program will provide the 
key to developing a theory that will have computational utility. A 
fruitful area of study would be to devise experimental tests in which the 
effective modulu: theory is to be expected to be invalid. For these tests 
one can then study the ability of a restricted form of the general formu- 
lation; obtained by postulating a form of the kernel function; to reproduce 
the test data. 

A second type error to be expected will grow with observation time or 
observation distance.  Signal distortion and signal decay, which are not 
predicted by the dynamical effective modulus theory, increase with propa- 
gation distance. The importance, for a vibrating system, of the irreversible 
transformation of mechanical energy to an incoherent form similarly grows 
with observation time.  It has been demonstrated that the field equations 
of a dynamical strain gradient formulation can be made to reproduce those 
features of the exact infinite medium dispersion spectrum that are relevant 
to these problems provided one correctly chooses the mater al parameters of 
the formulation. However, to show that a dynamical strain gradient formu- 
lation is a proper generalized formulation for reproducing long time 
solutions roquires one to look at the complete formulation. That is, one 
must look at the auxiliary conditions that are to be specified for a well- 
posed problem as well as the nature of the solutions admitted by the field 
equations. The author suspects that here difficulties will be encountered 
by a dynamical strain gradient formulation.  Further study is required 
into a proper computationally useful formulation for reproducing long time 
solutions of a dynamical system. Since the ultimate test of this formula- 
tion will be a laboratory test, it is necessary to develop the capability 
Of making measurements over a sufficiently long observation time or 
observation distance that will not be completely submerged in the "noise" 
field that results fro;ii the multiple interaction of the strain signals 
and the bounding surfaces of the specimen. 

It is clear, for example, that since the strength characteristics of 
the matrix of a fiber reinforced composite differs substantially from the 
strength characteristics of the fiber, it is not reasonable to attempt to 
relate failure to an averaged value of the stress taken over both the 
matrix and the fiber phases. Some information on the variance of the stress 
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about this average is of obvious practical importance.  It is for tal« 
reason that a formulation was developed to prov.de predictions of  e 
correlation functions defined on the stress'field. Although this formula 
Uon is extremely complex, it is important to begin studief tha wUl 
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